companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories












Company Directories & Business Directories

TRANSCONTINENTAL PRINTING INC

BOUCHERVILLE-Canada

Company Name:
Corporate Name:
TRANSCONTINENTAL PRINTING INC
Company Title:  
Company Description:  
Keywords to Search:  
Company Address: 1485 Rue DE Coulomb,BOUCHERVILLE,QC,Canada 
ZIP Code:
Postal Code:
J4B7L8 
Telephone Number: 4506419000 
Fax Number: 4506410215 
Website:
 
Email:
 
USA SIC Code(Standard Industrial Classification Code):
275202 
USA SIC Description:
Printers 
Number of Employees:
250 to 499 
Sales Amount:
$50 to 100 million 
Credit History:
Credit Report:
Excellent 
Contact Person:
Francois Olivier 
Remove my name



copy and paste this google map to your website or blog!

Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples:
WordPress Example, Blogger Example)









Input Form:Deal with this potential dealer,buyer,seller,supplier,manufacturer,exporter,importer

(Any information to deal,buy, sell, quote for products or service)

Your Subject:
Your Comment or Review:
Security Code:



Previous company profile:
TRANSFORMATION ECLIPSE INC
TRANSFLEX CANADA LTEE
TRANSFAB INC
Next company profile:
TRANSAX TECHNOLOGIES INC
TRANS-RIVE INC
TRANS-ENERDIS INC










Company News:
  • machine learning - What is a fully convolution network? - Artificial . . .
    Fully convolution networks A fully convolution network (FCN) is a neural network that only performs convolution (and subsampling or upsampling) operations Equivalently, an FCN is a CNN without fully connected layers Convolution neural networks The typical convolution neural network (CNN) is not fully convolutional because it often contains fully connected layers too (which do not perform the
  • What is the fundamental difference between CNN and RNN?
    CNN vs RNN A CNN will learn to recognize patterns across space while RNN is useful for solving temporal data problems CNNs have become the go-to method for solving any image data challenge while RNN is used for ideal for text and speech analysis In a very general way, a CNN will learn to recognize components of an image (e g , lines, curves, etc ) and then learn to combine these components
  • Extract features with CNN and pass as sequence to RNN
    But if you have separate CNN to extract features, you can extract features for last 5 frames and then pass these features to RNN And then you do CNN part for 6th frame and you pass the features from 2,3,4,5,6 frames to RNN which is better The task I want to do is autonomous driving using sequences of images
  • convolutional neural networks - When to use Multi-class CNN vs. one . . .
    0 I'm building an object detection model with convolutional neural networks (CNN) and I started to wonder when should one use either multi-class CNN or a single-class CNN
  • What is a cascaded convolutional neural network?
    The paper you are citing is the paper that introduced the cascaded convolution neural network In fact, in this paper, the authors say To realize 3DDFA, we propose to combine two achievements in recent years, namely, Cascaded Regression and the Convolutional Neural Network (CNN) This combination requires the introduction of a new input feature which fulfills the "cascade manner" and
  • When training a CNN, what are the hyperparameters to tune first?
    I am training a convolutional neural network for object detection Apart from the learning rate, what are the other hyperparameters that I should tune? And in what order of importance? Besides, I r
  • How to handle rectangular images in convolutional neural networks . . .
    I think the squared image is more a choice for simplicity There are two types of convolutional neural networks Traditional CNNs: CNNs that have fully connected layers at the end, and fully convolutional networks (FCNs): they are only made of convolutional layers (and subsampling and upsampling layers), so they do not contain fully connected layers With traditional CNNs, the inputs always need
  • How do I handle large images when training a CNN?
    Suppose that I have 10K images of sizes $2400 \\times 2400$ to train a CNN How do I handle such large image sizes without downsampling? Here are a few more specific questions Are there any tech
  • How to use CNN for making predictions on non-image data?
    You can use CNN on any data, but it's recommended to use CNN only on data that have spatial features (It might still work on data that doesn't have spatial features, see DuttaA's comment below) For example, in the image, the connection between pixels in some area gives you another feature (e g edge) instead of a feature from one pixel (e g color) So, as long as you can shaping your data




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer