companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories












Company Directories & Business Directories

LOUTIL IDEAL DIV PLASTIQUES INDU

SAINT-LEONARD-Canada

Company Name:
Corporate Name:
LOUTIL IDEAL DIV PLASTIQUES INDU
Company Title:  
Company Description:  
Keywords to Search:  
Company Address: 8195 Rue Champ Deau,SAINT-LEONARD,QC,Canada 
ZIP Code:
Postal Code:
H1P 
Telephone Number: 5143217600 
Fax Number:  
Website:
 
Email:
 
USA SIC Code(Standard Industrial Classification Code):
178310 
USA SIC Description:
PLASTIC FABRICATING FINISHING & DECORATORS 
Number of Employees:
 
Sales Amount:
$1 to 2.5 million 
Credit History:
Credit Report:
Excellent 
Contact Person:
 
Remove my name



copy and paste this google map to your website or blog!

Press copy button and paste into your blog or website.
(Please switch to 'HTML' mode when posting into your blog. Examples:
WordPress Example, Blogger Example)









Input Form:Deal with this potential dealer,buyer,seller,supplier,manufacturer,exporter,importer

(Any information to deal,buy, sell, quote for products or service)

Your Subject:
Your Comment or Review:
Security Code:



Previous company profile:
LUOMO DOMANI
LUNIVERS DE LOULOU
LUMO DOMANI
Next company profile:
LOPTIQUE CENTENNIAL LTEE
LEXCELLENCE COMPAGNIE DASSURANCE VIE
LESCALE AU SOLEIL ST LEONARD










Company News:
  • NumPy
    Or copy paste the code, and click on the "Run" button in the toolbar """# The standard way to import NumPy:import numpy as np # Create a 2-D array, set every second element in# some rows and find max per row:x = np arange (15, dtype=np int64) reshape (3, 5) x [1:, ::2] =-99x # array ( [ [ 0, 1, 2, 3, 4],# [-99, 6, -99, 8, -99],# [-99, 11, -99
  • numpy. trapz — NumPy v1. 21 Manual
    >>> theta = np linspace(0, 2 * np pi, num=1000, endpoint=True) >>> np trapz(np cos(theta), x=np sin(theta)) 3 141571941375841
  • numpy. min — NumPy v2. 3 Manual
    >>> import numpy as np >>> a = np arange(4) reshape((2,2)) >>> a array([[0, 1], [2, 3]]) >>> np min(a) # Minimum of the flattened array 0 >>> np min(a, axis=0) # Minima along the first axis array([0, 1]) >>> np min(a, axis=1) # Minima along the second axis array([0, 2]) >>> np min(a, where=[False, True], initial=10, axis=0) array([10, 1])
  • NumPy documentation — NumPy v2. 3 Manual
    Version: 2 3 Download documentation: Historical versions of documentation Useful links: Installation | Source Repository | Issue Tracker | Q A Support | Mailing List NumPy is the fundamental package for scientific computing in Python It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays and matrices), and an assortment of routines
  • Polynomials — NumPy v2. 3 Manual
    >>> import numpy as np >>> p1d = np poly1d([1, 2, 3]) >>> p = np polynomial Polynomial(p1d coef[::-1])
  • numpy. logical_and — NumPy v2. 3 Manual
    The operator can be used as a shorthand for np logical_and on boolean ndarrays
  • numpy. arctan2 — NumPy v2. 3 Manual
    >>> import numpy as np >>> x = np array([-1, +1, +1, -1]) >>> y = np array([-1, -1, +1, +1]) >>> np arctan2(y, x) * 180 np pi array([-135 , -45 , 45 , 135 ])
  • NumPy Documentation
    Web Latest (development) documentation NumPy Enhancement Proposals Versions: Numpy 2 3 Manual [HTML+zip] [Reference Guide PDF] [User Guide PDF] Numpy 2 2 Manual [HTML+zip] [Reference Guide PDF] [User Guide PDF] Numpy 2 1 Manual [HTML+zip] [Reference Guide PDF] [User Guide PDF] Numpy 2 0 Manual [HTML+zip] [Reference Guide PDF] [User Guide PDF] Numpy 1 26 Manual [HTML+zip] Numpy 1 25 Manual
  • numpy. block — NumPy v2. 3 Manual
    This is primarily useful for working with scalars, and means that code like np block([v, 1]) is valid, where v ndim == 1 When the nested list is two levels deep, this allows block matrices to be constructed from their components




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer