companydirectorylist.com  Global Business Directories and Company Directories
Search Business,Company,Industry :


Country Lists
USA Company Directories
Canada Business Lists
Australia Business Directories
France Company Lists
Italy Company Lists
Spain Company Directories
Switzerland Business Lists
Austria Company Directories
Belgium Business Directories
Hong Kong Company Lists
China Business Lists
Taiwan Company Lists
United Arab Emirates Company Directories


Industry Catalogs
USA Industry Directories














  • 一文了解Transformer全貌(图解Transformer)
    网上有关Transformer原理的介绍很多,在本文中我们将尽量模型简化,让普通读者也能轻松理解。 1 Transformer整体结构 在机器翻译中,Transformer可以将一种语言翻译成另一种语言,如果把Transformer看成一个黑盒,那么其结构如下图所示:
  • 如何最简单、通俗地理解Transformer? - 知乎
    Transformer最开始应用于NLP领域的机器翻译任务,但是它的通用性很好,除了NLP领域的其他任务,经过变体,还可以用于视觉领域,如ViT(Vision Transformer)。 这些特点让Transformer自2017年发布以来,持续受到关注,基于Transformer的工作和应用层出不穷。
  • Transformer模型详解(图解最完整版) - 知乎
    Transformer 的整体结构,左图Encoder和右图Decoder 可以看到 Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6 个 block。Transformer 的工作流程大体如下: 第一步: 获取输入句子的每一个单词的表示向量 X, X 由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的
  • 如何从浅入深理解 Transformer? - 知乎
    Transformer升级之路:12、无限外推的ReRoPE? Transformer升级之路:13、逆用Leaky ReRoPE Transformer升级之路:14、当HWFA遇见ReRoPE 预训练一下,Transformer的长序列成绩还能涨不少! VQ一下Key,Transformer的复杂度就变成线性了 Transformer升级之路:15、Key归一化助力长度外推
  • 如何从浅入深理解 Transformer? - 知乎
    在过去的文章里我们梳理过Transformer的整体架构,分析过它当中比较重要的组件,比如自注意力机制,但是我们发现真正构建系统化认知的关键,在于理解各个组件如何串联协作以及端到端的数据流。今天我们将开启Transformer架构深度解析系列的上篇,化身“数据导游”,带你亲历编码器(Encoder)的
  • Transformer模型怎么用于regression的问题? - 知乎
    回归问题概述 Transformer模型基础 回归问题中的Transformer架构调整 应用案例 优化与技巧 挑战与改进 1 回归问题概述 回归问题是监督学习中的一种任务,目标是预测一个连续值。这类问题通常涉及对数值数据的建模,常见的应用场景包括: 股票价格预测 温度预测 房价预测 传感器数据的分析 回归
  • MoE和transformer有什么区别和联系? - 知乎
    01 Transformer:像“万能翻译官”的神经网络 Transformer 是当今AI大模型(如ChatGPT)的核心架构,最初用于机器翻译,核心是自注意力机制(Self-Attention),能同时分析句子中所有词的关系,而非像传统RNN那样逐词处理。 核心特点: 并行计算:同时处理所有词
  • 你对下一代Transformer架构的预测是什么? - 知乎
    2 引入随机化(Randomized Transformer) Transformer巨大的规模使得不管训练还是推理都极具挑战。 然而,很少有人知道的是,引入随机化矩阵算法可以减少Transformer需要的FLOPs。 虽然这种做法会降低计算的精度,但这对Transformer的预测性能却可能是好事。




Business Directories,Company Directories
Business Directories,Company Directories copyright ©2005-2012 
disclaimer