|
- calculus - Trigonometric functions and the unit circle - Mathematics . . .
Since the circumference of the unit circle happens to be $ (2\pi)$, and since (in Analytical Geometry or Trigonometry) this translates to $ (360^\circ)$, students new to Calculus are taught about radians, which is a very confusing and ambiguous term
- Tips for understanding the unit circle - Mathematics Stack Exchange
By "unit circle", I mean a certain conceptual framework for many important trig facts and properties, NOT a big circle drawn on a sheet of paper that has angles labeled with degree measures 30, 45, 60, 90, 120, 150, etc (and or with the corresponding radian measures), along with the exact values for the sine and cosine of these angles
- How does $e^ {i x}$ produce rotation around the imaginary unit circle?
Time is point rotation in a circle There are 2 other circles and 2 other point rotations around those circles that are all mutually perpendicular to each other, therefore separate dimensions
- general topology - Why do we denote $S^1$ for the the unit circle and . . .
Maybe a quite easy question Why is $S^1$ the unit circle and $S^2$ is the unit sphere? Also why is $S^1\\times S^1$ a torus? It does not seem that they have anything
- trigonometry - In the unit circle, how are sine and cosine values . . .
I do understand that the unit circle has a radius of 1 and sides of triangles made within it must pertain to the pythagorean theorem (hence these values with radicals, for accuracy), but that is all I understand How would one know to put exactly $\frac {\sqrt 3} {2}$ for the sine of $\frac {\pi} {3}$ radians? This is unclear to me
- Show that unit circle is not homeomorphic to the real line
Show that unit circle is not homeomorphic to the real line Ask Question Asked 7 years, 7 months ago Modified 6 years, 2 months ago
- Can we characterize the Möbius transformations that maps the unit disk . . .
So the answer is that the Möbius transformations sending the unit circle to itself are precisely the Möbius transformations sending the unit disc to itself, and their multiplicative inverses
- How do I get the slope on a circle? - Mathematics Stack Exchange
The prior answers have all used calculus I'm going to post an answer using only trig The following diagram from Wikipedia's Trig Page is helpful However, that diagram also has a fault--the picture is very cluttered :) Thus, I've redrawn it for you, labeling the components important for this problem: Note that $\csc\theta$ returns the distance from the origin to the y-intercept of the
|
|
|