|
- 实体识别「NER」模型有哪些? - 知乎
NER任务一般可分为 flat NER(简单、扁平实体抽取) 、 nested NER (嵌套实体抽取) 、 discontinuous NER (不连续实体抽取)。 对于其中的这样复杂的子任务,无法使用传统的标记方法将其纳入同一个框架。
- 实体命名识别(NER)如何入门? - 知乎
NER 也是一项非常实用的技术,包括在互联网数据标注、搜索引擎、推荐系统、知识图谱、医疗保健等诸多领域有广泛应用。 1 环境安装 本案例基于 Python>=3 8,请在您的计算机上安装好Python,并且有一张英伟达显卡(显存要求并不高,大概10GB左右就可以跑)。
- 实体识别「NER」模型有哪些? - 知乎
3 美团搜索中NER技术的探索与实践, 2020 博客链接: 美团搜索中NER技术的探索与实践 传统的NER技术仅能处理通用领域既定、既有的实体,但无法应对 垂直领域所特有的实体类型,在美团搜索场景下,通过对 POI 结构化信息、商业评论数据、搜索日志等独有数据进行离线挖掘,可以很好地解决领域实体
- 实体命名识别(NER)如何入门? - 知乎
此外,还有一些NER API,如自然语言工具包(NLTK)、斯坦福命名实体识别器和SpaCy,它们提供了预训练模型和易于使用的接口来提取命名实体。 1 2 三种NER任务 常见的NER任务主要包括以下三种:
- 有哪些比BERT-CRF更好的NER模型? - 知乎
前言 这篇文章梳理下目前命名实体识别(NER)的业务场景与SOTA方法。 说到NER,是绕不开BERT+CRF的,根据本人的经验,BERT+CRF就算不是你当前数据集的SOTA,也与SOTA相差不大了,但考虑到 更好的效果:CRF虽然引入了无向图,但只约束了相连结点之间的关联,并没有从全局出发来考虑问题 更复杂的业务
- 命名实体识别(NER)中,如何同时解决非连续和嵌套实体的识别? - 知乎
命名实体识别(NER)中,如何同时解决非连续和嵌套实体的识别? 嵌套可以采用多头标注,非连续可以采用扩展BIO的标注或是转化为关系抽取问题,如何在工业上同时解决这两个问题呢? 显示全部 关注者 42
- 有哪些比BERT-CRF更好的NER模型? - 知乎
这证明了GPT-NER在现实世界中NER应用中,在标记样本数量有限的情况下,具有更强大的性能表现能力。 section1-GPT-NER 这部分主要介绍了GPT-NER的具体实现步骤,包括Prompt构建、Few-shot演示、输入句子等步骤以及解决LLMs幻觉问题的自我验证策略。
- 目前中文命名实体识别有哪些好的选择? - 知乎
为什么NER如此出色 想象一下:你正在阅读一篇关于“华盛顿”的文章。它可能指的是华盛顿州,也可能是华盛顿特区,或者是乔治·华盛顿本人。这很让人困惑,对吧?机器也有同感 —— 除非我们教会它们如何理解这一切。这时,命名实体识别(NER)就派上用场了。 NER就像是赋予人工智能一种超
|
|
|