|
- How can I iterate over rows in a Pandas DataFrame?
df_original["A_i_minus_2"] = df_original["A"] shift(2) # val at index i-2 df_original["A_i_minus_1"] = df_original["A"] shift(1) # val at index i-1 df_original["A_i_plus_1"] = df_original["A"] shift(-1) # val at index i+1 # Note: to ensure that no partial calculations are ever done with rows which # have NaN values due to the shifting, we can
- How do I select rows from a DataFrame based on column values?
df[df["cost"] eq(250)] cost revenue A 250 100 Compare DataFrames for greater than inequality or equality elementwise df[df["cost"] ge(100)] cost revenue A 250 100 B 150 250 C 100 300 Compare DataFrames for strictly less than inequality elementwise
- How do I get the row count of a Pandas DataFrame?
Of the three methods above, len(df index) (as mentioned in other answers) is the fastest Note All the methods above are constant time operations as they are simple attribute lookups df shape (similar to ndarray shape) is an attribute that returns a tuple of (# Rows, # Cols) For example, df shape returns (8, 2) for the example here
- In pandas, whats the difference between df[column] and df. column?
I'm working my way through Pandas for Data Analysis and learning a ton However, one thing keeps coming up The book typically refers to columns of a dataframe as df['column'] however, sometimes without explanation the book uses df column I don't understand the difference between the two Any help would be appreciated
- Selecting multiple columns in a Pandas dataframe
newdf = df[df columns[2:4]] # Remember, Python is zero-offset! The "third" entry is at slot two As EMS points out in his answer, df ix slices columns a bit more concisely, but the columns slicing interface might be more natural, because it uses the vanilla one-dimensional Python list indexing slicing syntax
- disk usage - Differences between df, df -h, and df -l - Ask Ubuntu
df -h tells df to display sizes in Gigabyte, Megabyte, or Kilobyte as appropriate, akin to the way a human would describe sizes Actually, the h stands for "human-readable" df -l tells df to display only local filesystems, but no remote ones
- In R, What is the difference between df [x] and df$x
I usually see that [[ is used for lists, [ for arrays and $ for getting a single column or element If you need an expression (for example df[[name]] or df[,name]), then use the [ or [[ notation also The [ notation is also used if multiple columns are selected For example df[,c('name1', 'name2')] I don't think there is a best-practices for this
- Difference between df. where( ) and df [ (df [ ] == ) ] in pandas . . .
As per the documentation of where: Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other
|
|
|