|
- Transformer 和 cnn 是两条差异巨大的路径吗? - 知乎
cnn 是硬件局限下的产物 cnn主要处理图像数据,T主要处理序列数据 cnn, MLP,T 资源有限就简化MLP 资源无限就堆叠MLP 从理论性质的角度,有差异的地方,例如全局性和局部性,也有相同的地方, 金字塔 也有全局性, mask 也有局部性。 从效果上看,各有千秋,各有所长。 讨论巨大化的差异还是要有
- CNN模型合集 - 知乎
置顶 CNN模型合集 | 绪论与目录 本专栏总结了几乎所有重要的深度学习CNN网络模型,以总结式思路直击重点,涵盖了从1998年的LeNet到2019年的EfficientNet二十几种模型,建议从头开始学习,细细理解网络设计的思…
- CNN(卷积神经网络)是什么?有何入门简介或文章吗?
CNN 全称是 Convolutional Neural Network,中文又叫做 卷积神经网络。 在详细介绍之前,我觉得有必要先对 神经网络 做一个说明。
- 如何理解卷积神经网络(CNN)中的卷积和池化? - 知乎
如何理解卷积神经网络(CNN)中的卷积和池化? 题主在学习ML的过程中发现,在CNN的诸多教程与论文当中对卷积和池化的介绍都不如其他方面直观和易于理解,这个领域对我来说一直是一个黑箱,除了能简单掌握…
- BBC和CNN是什么关系? - 知乎
CNN是1980建立的一家新闻媒体公司,是美国第一个24小时新闻频道,之前新闻只会放在特点时段,类似于我们的新闻联播,但是CNN通过全天放新闻,可以第一时间报道重大事件的发生。
- CNN卷积神经网络的始祖文是哪篇? - 知乎
卷积神经网络 (CNN)的开创性工作可以追溯到 Yann LeCun 在 1998 年发表的论文,论文题目为:“Gradient-based learning applied to document recognition”。 这篇论文介绍了一种名为 LeNet-5 的卷积神经网络架构,主要应用于 手写数字识别 任务。
- 2025 年了,你还会用 RSS 吗?有哪些好的订阅源推荐? - 知乎
1 RSS 的现状与未来 尽管在 2025 年,RSS 的使用率可能不如过去广泛,但它仍然是一个非常有用的工具,特别是对于那些希望高效获取信息的用户。 RSS 允许用户通过 RSS 阅读器(如 Feedly、Inoreader 等)订阅和管理多个网站的更新,避免了逐个访问网站的麻烦。 2 为什么我还会用 RSS? 高效信息获取:RSS
- 损失函数|交叉熵损失函数
3 学习过程 交叉熵损失函数经常用于分类问题中,特别是在神经网络做分类问题时,也经常使用交叉熵作为损失函数,此外,由于交叉熵涉及到计算每个类别的概率,所以交叉熵几乎每次都和 sigmoid (或softmax)函数 一起出现。
|
|
|