|
- Experts in Innovative Food Merchandising Solutions | HUBERT. com
Hubert is the leader in food merchandising, tailored solutions and quality service across the US and Canada Home to more than 130,000 products, Hubert com offers top brands like Vollrath, Cambro and Vulcan
- HuBERT:基于BERT的自监督 (self-supervised)语音表示学习
本文我将介绍HuBERT,一个基于BERT的自监督语音表示学习的工作。近年来基于自监督的表示学习在NLP领域非常流行,但语音的表示学习和NLP不同面临很多其它的挑战。HuBERT来自Facebook,在ASR上有非常不错的表现,是…
- Wav2Vec HuBert WavLM 自监督语音大模型 - CSDN博客
腾讯游戏知几AI团队与西工大ASLP组联合发布了基于 WenetSpeech 1 万小时数据训练的中文版 Wav2vec 2 0 和 HuBERT 模型。Wav2vec 2 0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音
- HuBERT: Self-Supervised Speech Representation Learning by Masked . . .
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach
- GitHub - bshall hubert: HuBERT content encoders for: A Comparison of . . .
HuBERT content encoders for: A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion - bshall hubert
- 如何解读huBERT这篇顶会文章? - 知乎
摘要 论文提出了一种名为HuBERT(Hidden-Unit BERT)的自监督语音表示学习方法,通过掩码预测隐藏单元的聚类标签,解决了语音信号中的三个核心问题:(1)输入语句中多音素共存;(2)预训练阶段缺乏音素词典;(3)音素边界不明确且长度可变。HuBERT采用离线聚类(如k-means)生成对齐的伪标签
- 语音识别预训练模型Hidden-Unit BERT (HuBERT) - CSDN博客
1 简介 本文根据2021年《HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units》翻译总结的。 自监督语音学习面临3个挑战,1)在每句话中有多个声音单元;2)在预训练阶段没有输入声音单元对应的词典;3)声音单元长度可变,没有明确的分割。
- About Hubert Company - Experts in Innovative Food Merchandising . . .
Hubert Company is a worldwide industry leader in food merchandising You’ve probably seen and used our products in cafeterias, supermarkets, restaurants, and anywhere else food is prepared or sold
|
|
|